Optical forces from an evanescent wave on a magnetodielectric small particle.
نویسندگان
چکیده
We report the first study on the optical force exerted by an evanescent wave on a small sphere with both electric and magnetic responses to the incident field, immersed in an arbitrary nondissipative medium. New expressions and effects from their gradient, radiation pressure, and curl components are obtained owing to the particle induced electric and magnetic dipoles, as well as to their mutual interaction. We predict possible dramatic changes in the force depending on the host medium, the polarization, and the nature of the surface wave.
منابع مشابه
Optical binding of cylinder photonic molecules in the near field of partially coherent fluctuating Gaussian Schell model sources: a coherent mode representation.
We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus...
متن کاملTailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source
We address the forces exerted by the random electromagnetic field emitted by a fluctuating optical source on a kind of dielectric nanoparticles that have arisen much interest because of their recently shown magnetodielectric behavior. The illumination with light, or other electromagnetic wave, of a given state of coherence allows us to create photonic forces, a particular case of which are opti...
متن کاملSurface delivery of a single nanoparticle under moving evanescent standing-wave illumination
We study the delivery of a submicrometre-sized spherical dielectric particle suspended in water and confined in an evanescent field in the proximity of a glass–water interface. When illuminated by a single evanescent wave, the particle is propelled along the glass surface by the radiation pressure. Illumination by two counter-propagating and coherent evanescent waves leads to the formation of a...
متن کاملNonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Her...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 35 23 شماره
صفحات -
تاریخ انتشار 2010